論文

  1. N. Ioku, K. Ishige and T. Kawakami, Existence of solutions to a fractional semilinear heat equation in uniformly local weak Zygmund type spaces, to appear in Anal. PDE
  1. T. Kawakami, Y. Sire and J.-N. Wang, Fujita exponent for the global-in time sollutions to a semilinear heat equation with non homogeneous weights, to apper in J. Evol. Equ.
  1. M. Fila, K. Ishige, and T. Kawakami, Solvability of the heat equation on a half-space with a dynamical boundary condition and unbounded initial data, Z. Angew. Math. Phys. 74 (2023), Paper No. 143, 17 pp. impact factor; SJR
  1. K. Ishige and T. Kawakami, Refined asymptotic expansions of solutions to fractional diffusion equations, to apper in J. Dynam. Differential Equations.
  1. S. Hasegawa, N. Ikoma and T. Kawakami, On weak solutions to a fractional Hardy-Henon equation: Part II: Existence, Nonlinear Anal. 227 (2023), Paper No. 113165, 48 pp.
  1. K. Ishige, T. Kawakami and S. Okabe, Existence of solutions to nonlinear parabolic equations via majorant integral kernel, Nonlinear Anal. 223 (2022), Paper No.113025, 22pp.
  1. G. Furioli, T. Kawakami and E. Terraneo, Heat equation with an exponential nonlinear boundary condtion in the half space, Partial Differ. Equ. Appl. 3 (2022), Paper No.36, 44pp.
  1. S. Hasegawa, N. Ikoma and T. Kawakami, On weak solutions to a fractional Hardy-Henon equation: Part I: Nonexistence. Commun. Pure Appl. Anal. 20 (2021), 1559--1600. impact factor; SJR
  1. M. Fila, K. Ishige, T. Kawakami and J. Lankeit, The large diffusion limit for the heat equation in the exterior of the unit ball with a dynamical boundary condition, Discrete Cintin. Dyn. Syst. 40 (2020), 6529--6546. impact factor; SJR
  1. K. Ishige, T. Kawakami and S. Okabe, Existence of solutions for a higher-order semilinear parabolic equation with singular initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire 37 (2020) 1185--1209. impact factor; SJR
  1. T. Kawakami and M. Muratori, Nonexistence of radial optimal functions for the Sobolev inequality on Mn, Springer INdAM Ser., 47 (2021) 183--203.
  1. M. Jleli, T. Kawakami and B. Samet, Critical behavior for a semilinear parabolic equation with forcing term depending of time and space, J. Math. Anal. Appl. 486 (2020), 123931, 16 pp. impact factor; SJR
  1. M. Fila, K. Ishige and T. Kawakami, The large diffusion limit for the heat equation with a dynamical boundary condition, Commun. Contemp. Math. 23 (2021), 2050003, 20 pp. impact factor; SJR
  1. Y. Fujishima, T. Kawakami and Y. Sire, Critical exponent for the global existence of solutions to a semilinear heat equation with degenerate coefficients, Calc. Var. Partial Differential Equations 58 (2019), Art. 62. impact factor; SJR
  1. M. Fila, K. Ishige, T. Kawakami and Johannes Lankeit, Rate of convergence in the large diffusion limit for the heat equation with a dynamical boundary condition, Asymptot. Anal. 114 (2019), 37--57. impact factor; SJR
  1. K. Ishige and T. Kawakami, Critical Fujita exponents for semilinear heat equations with quadratically decaying potential, Indiana Univ. Math. J. 69 (2020) 2171--2207. impact factor; SJR
  1. K. Ishige, T. Kawakami and H. Michihisa, Asymptotic expansions of solutions of fractional diffusion equations, SIAM J. Math. Anal. 49 (2017), 2167--2190. impact factor; SJR
  1. M. Fila, K. Ishige and T. Kawakami, An exterior nonlinear elliptic problem with a dynamical boundary condition, Rev. Mat. Complut. 30 (2017), 281--312. impact factor; SJR
  1. G. Furioli, T. Kawakami, B. Ruf and E. Terraneo, Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity, J. Differential Equations 262 (2017), 145--180. impact factor; SJR
  1. T. Kawakami and H. Takeda, Higher order asymptotic expansions to the solutions for a nonlinear damped wave equation, No DEA Nonlinear Differential Equations Appl. 23 (2016), Art. 54, 30pp. impact factor; SJR
  1. T. Iwabuchi and T. Kawakami, Existence of mild solutions for the Hamilton-Jacobi equation with critical fractional viscosity in the Besov spaces, J. Math. Pures Appl. 107 (2017), 464--489. impact factor; SJR
  1. K. Ishige, T. Kawakami and M. Sierzega, Supersolutions for a class of nonlinear parabolic systems, J. Differential Equations 260 (2016), 6084--6107. impact factor; SJR
  1. M. Fila, K. Ishige and T. Kawakami, Minimal solutions of a semilinear elliptic equation with a dynamical boundary condition, J. Math. Pures Appl. 105 (2016), 788--809. impact factor; SJR
  1. M. Fila, K. Ishige and T. Kawakami, Positive solutions of a semilinear elliptic equation with singular Dirichelet boundary data, J. Ellipitic Parabol. Equ. 1 (2015), 331--357.
  1. T. Kawakami and Y. Sugiyama, Uniqueness theorem on weak solutions to the Keller-Segel system of degenerate and singular types, J. Differential Equations 260 (2016), 4683--4716. impact factor; SJR
  1. M. Fila, K. Ishige and T. Kawakami, Existence of positive solutions of a semilinear elliptic equation with a dynamical boundary condition, Calc. Var. Partial Differential Equations 54 (2015), 2059--2078. impact factor; SJR
  1. T. Kawakami and S. Sakaguchi, When does the heat equation have a solution with a sequence of similar level sets?, Ann. Mat. Pura Appl. 194 (2015), 1595--1605. impact factor; SJR
  1. K. Ishige, T. Kawakami and K. Kobayashi, Asymptotics for a nonlinear integral equation with a generalized heat kernel, J. Evol. Equ. 14 (2014), 749--777. impact factor; SJR
  1. Y. Kabeya, T. Kawakami, A. Kosaka and H. Ninomiya, Eigenvalues of the Laplace-Beltrami operator on a large spherical cap under the Robin problem, Kodai Math. J. 37 (2014), 620--645. impact factor; SJR
  1. T. Kawakami, Higher order asymptotic expansion for the heat equation with a nonlinear boundary condition, Funkcialaj Ekvacioj 57 (2014), 57--89. impact factor; SJR
  1. K. Ishige, T. Kawakami and K. Kobayashi, Global solutions for a nonlinear integral equation with a generalized heat kernel, Discrete Contin. Dyn. Syst. Ser. S. 7 (2014), 767--783.
  1. M. Fila, K. Ishige and T. Kawakami, Large time behavior of small solutions of a two-dimensional semilinear elliptic equation with a dynamical boundary condition, Asymptot. Anal. 85 (2013), 107--123. impact factor; SJR
  1. K. Ishige and T. Kawakami, Asymptotic expansions of solutions of the Cauchy problem for nonlinear parabolic equations, J. Anal. Math. 121 (2013), 317--351. impact factor; SJR
  1. M. Fila, K. Ishige and T. Kawakami, Large time behavior of solutions of a semilinear elliptic equation with a dynamical boundary condition, Adv. Differential Equations 18 (2013), 69--100. impact factor; SJR
  1. T. Kawakami and Y. Ueda, Asymptotic profiles to the solutions for a nonlinear damped wave equation, Differential Integral Equations 26 (2013), 781--814. impact factor; SJR
  1. K. Ishige and T. Kawakami, Refined asymptotic profiles a semilinear heat equation, Math. Ann. 353 (2012), 161--192. impact factor; SJR
  1. M. Fila, K. Ishige and T. Kawakami, Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition, Commun. Pure Appl. Anal. 11 (2012), 1285--1301. impact factor; SJR
  1. T. Kawakami, Entropy dissipation method for the solutions of the heat equation with a nonlinear boundary condition, Adv. Math. Sci. Appl. 20 (2010), 169--192.
  1. K. Ishige and T. Kawakami, Global solutions of the heat equation with a nonlinear boundary condition, Calc. Var. Partial Differential Equations 39 (2010), 429--457.impact factor; SJR
  1. T. Kawakami, Global existence of solutions for the heat equation with a nonlinear boundary condition, J. Math. Anal. Appl. 368 (2010), 320--329. impact factor; SJR
  1. K. Ishige, M. Ishiwata and T. Kawakami, The decay of the solutions for the heat equation with a potential, Indiana Univ. Math. J. 58 (2009), 2673--2707. impact factor; SJR
  1. K. Ishige and T. Kawakami, Asymptotic behavior of solutions for some semilinear heat equations in RN, Commun. Pure Appl. Anal. 8 (2009), 1351--1371. impact factor; SJR

プレプリント

  1. Y. Fujishima, K. Ishige and T. Kawakami, Existence of solutions for a semilinear parabolic systemwith singular initial data,
  1. K. Ishige, T. Kawakami and R. Takada Existence of solutions to the fractional semilinear heat equation with a singular inhomogeneous term,

国際研究集会講究録 (査読付き)

  1. T. Kawakami, Entropy dissipations methods for the solutions of the porous medium equation with absorption. Nonlinear phenomena with energy dissipation, 243--252, GAKUTO Internat. Ser. Math. Sci. Appl., 29, Gakkōtosho, Tokyo, 2008.
  1. K. Ishige and T. Kawakami, Asymptotic behavior of solutions of some semilinear heat equations in RN. Recent advances in nonlinear analysis, 171--180, World Sci. Publ., Hackensack, NJ, 2008.

国際研究集会発表

  1. Asymptotic expansions of solutions to fractional diffusion equations, Geometric PDE and Applied Analysis Seminar, OIST, Okinawa, June, 2024.
  1. Existence of solutions to a fractional semilinear heat equation in uniformly local weak Zygmund type spaces, Italian Japanese Nonlinear Days, Milano Univeristy, Milano, Italy, May, 2024.
  1. Existence of solutions to a fractional semilinear heat equation in uniformly local weak Zygmund type spaces, East Asia Workshop on Nonlinear Evolution Equations, The University of Tokyo, Tokyo, March, 2024.
  1. Solvability of the heat equation on a half-space with a dynamical boundary condition, Workshop on Reaction-Diffusion Equations and Related Stochastic Topics, Waseda University, Tokyo, Nobember, 2023.
  1. Solvability of the heat equation on a half-space with a dynamical boundary condition, Euro-Japanese Conference on Nonlinear diffusions, ICMAT-UAM, Madrid, Spain, October, 2023.
  1. Solvability of the heat equation on a half-space with a dynamical boundary condition, Evolution Equations and Related Topics - Energy Structures and Quantitative Analysis -, RIMS, Kyoto, October, 2023.
  1. Existence of solutions to nonlinear parabolic equations via majorant integral kernel, Seminar on Qualitative Theory of DIfferential Equations, Comenius University, Bratislava, Slovakia, October, 2022.
  1. The large diffusion limit for the heat equation with a dynamical boundary condition, BIRS-CMO Workshop "New Trends in Nonlinear Diffusion: a Bridge between PDEs, Analysis and Geometry", Casa Mathematica Oaxaca (Online), September, 2021.
  1. Critical Fujita exponents for semilinear heat equations with quadratically decaying potential, Nonlinear Analysis Workshop, Chinese academy of Science, October, 2019.
  1. Critical exponent for the global existence of solutions to a semilinear heat equation with degenerate coefficients, New development in the theory of evolution equations: theory, phenomena and technology, RIMS, September, 2019.
  1. Critical exponent for the global existence of solutions to a semilinear heat equation with degenerate coefficients, 4th Swiss-Japanese PDE Seminar, I-site Namba, September, 2019.
  1. Critical exponent for the global existence of solutions to a semilinear heat equation with degenerate coefficients, The 44th Sapporo Symposium on Partial Differential Equations, Hokkaido University, August, 2019.
  1. Critical Fujita exponents for semilinear heat equations with quadratically decaying potential, Workshop on Nonlinear parabolic PDEs and related fields, The University of Tokyo, June, 2019.
  1. The large diffusion limit for the heat equation with a dynamical boundary condition, VI Italian-Japanese workshop on Geometric Properties for Parabolic and Elliptic PDE's, Cortona, Italy, May, 2019.
  1. The large diffusion limit for the heat equation with a dynamical boundary condition, PDE seminar, East China Normal University, Shanghai, China, May, 2019.
  1. Heat equation with a dynamical boundary condition, 12th AIMS International Conference on Dyn. Systems, Diff. Equations and Applications, National Taiwan University, Taipei, Taiwan, July, 2018.
  1. Positive solutions of a semilinear elliptic equation with singular Dirichlet boundary data, 12th AIMS International Conference on Dyn. Systems, Diff. Equations and Applications, National Taiwan University, Taipei, Taiwan July, 2018.
  1. The large diffusion limit for the heat equation with a dynamical boundary condition, 8th Euro-Japanses Workshop On Blow-up, Tohoku University, Sendai, Japan June, 2018.
  1. Critical Fujita exponents for semilinear heat equations with quadratically decaying potential, UK-Japan Workshop on Analysis of Nonlinear Partial Differential Equations, Swansea University, Swansea, UK, May, 2018.
  1. A semilinear elliptic equation with a dynamical boundary condition, 1138th AMS Meeting, Special Session on Partuial Differential Equations and New Perspecrive of Variational Methods, Vanderbilt University, Nashville, USA, April, 2018.
  1. A semilinear elliptic equation with a dynamical boundary condition, Seminario di Analisi matematica, University of Bergamo, Dalmine, Italy, November, 2017.
  1. Asymptotic expansion of solutions of fractional diffusion equations, Seminario di Analisi Nonlineare, University of Milano, Milano, Italy, November, 2017.
  1. An exterior nonlinear elliptic problem with a dynamical boundary condition, Analysis and Partial Differential Equations Seminar, Johns Hopkins University, Baltimore, USA, October, 2017.
  1. Decay estimates of the solutions for a nonlinear parabolic equation, Equadiff 2017, Slovak University of Technology in Bratislava, Bratislava, Slovakia, July, 2017.
  1. Asymptotic expansion of solutions of fractional diffusion equations, Singularity and asymptotic behavior os solutions for partial differential equations with conservation law, RIMS, Kyoto, June, 2017.
  1. An exterior nonlinear elliptic problem with a dynamical boundary condition, 2017 NCTS Workshop on Applied Mathematics ant Tainan, NCTS, Tainan University, March, 2017.
  1. Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity, International Workshop on Nonlinear PDEs 2016 in Osaka, Osaka Prefecture University, Nanba, December, 2016.
  1. An exterior nonlinear elliptic problem with a dynamical boundary condition, Analysis on Shapes of Solutions to Partial Differential Equations, RIMS, Kyoto, November, 2016.
  1. An exterior nonlinear elliptic problem with a dynamical boundary condition, Geometry of solutions of PDE's and its related inverse problems, Tohoku University, Sendai, October, 2016.
  1. A semilinear elliptic equation with a dynamical boundary condition, 7th Euro-Japanese workshop on Blow-up, Bedlewo, Poland, September, 2016.
  1. Minimal solutions of a semilinear elliptic equation with a dynamical boundary condition, XXXVI Convegno di Analisi Armonica,Gargnano, Italy, June, 2016.
  1. Minimal solutions of a semilinear elliptic equation with a dynamical boundary condition, 9th European conference on elliptic and parabolic problems, Gaeta, Italy, May, 2016.
  1. Higher order asymptotic expansions to the solutions for a nonlinear damped wave equation, Qualitative Theory of Differential Equation, Comenius University, Bratislava, Slovakia, May, 2016.
  1. Minimal solutions of a semilinear elliptic equation with a dynamical boundary condition, Seminari d'edps i aplicacions, Universitat Politecnica de Catalunya, Barcelona, Spain, February, 2016.
  1. Existence of mild solutions for the Hamilton-Jacobi equation with critical fractional viscosity in the Besov spaces, Seminario di Calcolo delle Variazioni & Equazioni alle Derivate Parziali, Universita degli Studi di Firenze, Florence, Italy, February, 2016.
  1. Existence of mild solutions for the Hamilton-Jacobi equation with critical fractional viscosity in the Besov spaces, Qualitative Theory of Differential Equation, Comenius University, Bratislava, Slovakia, November, 2015.
  1. Minimal solutions of a semilinear elliptic equation with a dynamical boundary condition, Seminari di Analisi nonlineare, Universita degli studi di Milano, Italia, November 2015.
  1. When does the heat equation have a solution with a sequence of similar level sets?, Geometric Properties for Parabolic and Elliptic PDE's, 4th Italian-Japanese Workshop, Palinuro, Italia, May 2015.
  1. When does the heat equation have a solution with a sequence of similar level sets?, Qualitative Theory of Differential Equation, Comenius University, Bratislava, Slovakia, May, 2015.
  1. When does the heat equation have a solution with a sequence of similar level sets?, 2015 NCTS Workshop on Applied Mathematics, Tankang University, Taiwan, March 2015.
  1. When does the heat equation have a solution with a sequence of similar level sets?, Singularities Arising in Nonilinear Problems 2014, Kansai Seminar House, Kyoto, November 2014.
  1. Existence of positive solutions of a semilinear elliptic equation with a dynamical boundary condition, HMC seminar, Kanazawa University, Kanazawa, November 2014.
  1. Existence of positive solutions of a semilinear elliptic equation with a dynamical boundary condition, 10th AIMS International Conference on Dyn. Systems, Diff. Equations and Applications, Madrid, Spain, July 2014.
  1. Existence of positive solutions of a semilinear elliptic equation with a dynamical boundary condition, 8th European conference on elliptic and parabolic problems, Gaeta, Italia, May 2014.
  1. Large time behavior of solutions of a semilinear elliptic equation with a dynamical boundary condition, 3rd Italian-Japanese Workshop on Geometric Properties for Parabolic and Elliptic PDE's, Tokyo Institute of Technology, Tokyo, September 2013.
  1. Large time behavior of solutions of a semilinear elliptic equation with a dynamical boundary condition, Equadiff 13, Prague, Czech Republic, August 2013.
  1. Asymptotic expansions of solutions of the Cauchy problem for nonlinear parabolic equations, ERC-NUMERIWAVES Seminar, BCAM, Spain, March 2013.
  1. Large time behavior of solutions of some elliptic equations with a dynamical boundary condition, Fukae workshop on PDE (2013), Kobe, Japan, January 2013.
  1. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition, Swiss-Japanese seminar, Zurich, Switzerland, December 2012.
  1. Higher order asymptotic expansion for the heat equation with a nonlinear boundary condition, 5th Euro-Japanese Workshop on Blow-up, Luminy, France, September 2012.
  1. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition,Second Sino-Chilean Conference on Nonlinear Partial Differential Equations and Nonlinear Analysis, Facultad Mathematicas Pontificia Unversidad Catolica, Santiago, July, 2012.
  1. High order asymptotic expansion for the heat equation with a nonlinear boundary condition, Workshop on Nonlinear Partial Differential Equations, Dept of Math Center of PDE, ECNU, November, 2011.
  1. High order asymptotic expansion for the heat equation with a nonlinear boundary condition, Analysis on Non-equilibria and Nonlinear Phenomena -from the evolution equation point of view-, RIMS, Kyoto, October, 2011.
  1. Asymptotic profile for the Laplace equation with a nonlinear dynamical boundary condition, Concentration and Related Topics for Nonlinear Problems, Tohoku University, November, 2010.
  1. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition, The 14th Hiroshima Applied Analysis Seminar, Hiroshima University, November, 2010.
  1. Refined asymptotic profiles for a semilinear heat equation, Qualitative Theory of Differential Equation, Comenius University, Bratislava, Slovakia, September, 2010.
  1. Refined asymptotic profiles for a semilinear heat equation, 4th Euro-Japanese Workshop on Blow-up, Lorentz Center, Leiden, Netherlands, September, 2010
  1. On the heat equation in a half-space with a nonlinear boundary condition, The 2nd GCOE International Symposium "Weaving Science Web beyond Particle-Matter Hierarchy", Tohoku University, February, 2010.
  1. On the heat equation in a half space with a nonlinear boundary condition, The second Chile-Japan workshop on nonlinear elliptic and parabolic PDEs, Meiji University, December, 2009.
  1. On the heat equation in a half space with a nonlinear boundary condition, 1st Italian-Japanese workshop on geometric properties for parabolic and elliptic PDE's, Tohoku University, June, 2009.
  1. On the heat equation in a half-space with a nonlinear boundary condition, Variational Problems and Related Topics, RIMS, Kyoto, June, 2009.
  1. Large time behavior of solutions for the heat equation with a nonlinear boundary condition, 2009 NCTS Taiwan-Japan Workshop on Partial Differential Equations, NCTS, Hsinchu, Taiwan, February, 2009.
  1. Entropy dissipations methods for the sign-changing solutions of some semilinear heat equations with the nonlinear boundary condition, Czech-Japanese Seminar in Applied Mathematics 2008, Miyazaki University, September, 2008.
  1. Entropy dissipations methods for the sign-changing solutions of some semilinear heat equations with the nonlinear boundary condition, The 9th Hiroshima Applied Analysis Seminar, Hiroshima University, September, 2008.
  1. Entropy dissipations methods for the sign-changing solutions of heat equations with the nonlinear boundary condition, 7th AIMS International Conference on Dyn. Systems, Diff. Equations and Applications, University of Texas at Arlington, USA, May, 2008.
  1. Entropy dissipations methods for the sign-changing solutions of heat equations with the nonlinear boundary condition, Taiwan-Tohoku Seminar on Differential Equations, Tohoku University, April, 2008.
  1. Entropy dissipations methods for the sign-changing solutions of heat equations with the nonlinear boundary condition, Minnesota-Tohoku seminar on PDE's, University of Minnesota, USA, March, 2008.
  1. Entropy dissipations methods for the sign-changing solutions of heat equations with the nonlinear boundary condition, The 9th Northeastern Symposium on Mathematical Analysis, Hokkaido University, February, 2008.
  1. Asymptotic behavior of solutions for some semilinear heat equations in RN, International Conference on Free boundary Problems in Chiba, Chiba University, November, 2007.
  1. Asymptotic behavior of solutions for some semilinear heat equations in RN, Equadiff 2007, Vienna University of Technology, Vienna, Austria, August, 2007.
  1. Asymptotic behavior of solutions for some semilinear heat equations, The 8th Northeastern Symposium on Mathematical Analysis, Tohoku University, February, 2007.
  1. Asymptotic Behavior of Solutions for Some Semilinear Heat Equation in RN, NCTS 2006 International Conference on Nonlinear Analysis, NCTS, Hsinchu, Taiwan, November, 2006.

口頭発表

  1. Refined Asymptotic Expansions of Solutions to Fractional Diffusion Equations, 応用数理解析セミナー, 東北大学, 2024年5月.
  1. Refined Asymptotic Expansions of Solutions to Fractional Diffusion Equations, 新潟駅前応用解析研究会, 新潟大学, 2024年1月.
  1. 半空間における指数型非線形境界条件を有する熱方程式について, 北陸応用数理研究会2022, 石川県政記念しいのき迎賓館 (ハイブリッド), 2022年3月.
  1. 非整数階時間微分を含む移流拡散方程式について, 非線形現象の数値シミュレーションと解析2022, 北海道大学, 2022年3月.
  1. Existence of solutions to nonlinear parabolic equations via majorant integral kernel, HMAセミナー・冬の研究会2022, 広島大学 (ハイブリッド), 2022年1月.
  1. 動的境界条件を有する半線形楕円型方程式及び線形熱方程式の解析, 応用数理勉強会2021, 神戸大学 (ハイブリッド), 2021年12月.
  1. Existence of solutions to nonlinear parabolic equations via majorant integral kernel, 鳥取PDE研究集会2021, 鳥取市役所 鳥取市民交流センター, 2021年11月.
  1. 時空間非斉次項を有する半線形拡散方程式の臨界指数, 第15回応用数理研究会, 北海道大学 (オンライン), 2021年8月.
  1. 動的境界条件を有する線形熱方程式の拡散極限, 数学と現象 : Mathematics and Phenomena in Miyazaki 2019, 宮崎大学, 2019年11月.
  1. 動的境界条件を有する線形熱方程式の拡散極限, 基盤研究(S)キックオフシンポジウム 発展方程式における系統的計上解析および漸近解析, 東京大学, 2019年10月.
  1. Critical Fujita exponents for semilinear heat equations with quadratically decaying potential, 大阪大学微分方程式セミナー, 大阪大学, 2019年6月.
  1. Critical exponent for the global existence of solutions to a semilinear heat equation with degenerate coefficients, 応用数理解析セミナー, 東北大学, 2019年4月.
  1. 動的境界条件付き熱方程式の拡散極限, 武蔵野大学・龍谷大学連携シンポジウム, 武蔵野大学, 2019年2月.
  1. Critical Fujita exponents for semilinear heat equations with quadratically decaying potential, 九州大学関数方程式セミナー, 福岡大学, 2019年1月.
  1. 動的境界条件付き半線形楕円型方程式, 日本数学会2018年度秋季総合分科会 函数方程式論分科会 特別講演, 岡山大学, 2018年9月.
  1. Critical Fujita exponents for semilinear heat equations with quadratically decaying potential, 京都大学NLPDEセミナー, 京都大学, 2018年5月.
  1. 外部領域における動的境界条件付き半線形楕円型方程式の可解性, 明治大学非線型数理セミナー, 明治大学, 2017年7月.
  1. Existence of mild solutions for the Hamilton-Jacobi equation with critical fractional viscosity in the Besov spaces, 名古屋大学微分方程式セミナー, 名古屋大学, 2017年6月.
  1. 外部領域における動的境界条件付き半線形楕円型方程式の可解性, 応用解析研究会, 早稲田大学, 2017年5月.
  1. 指数型非線形項を持つ非線形放物型方程式の時間大域解について, 武蔵野大学・龍谷大学連携シンポジウム, 武蔵野大学, 2017年2月.
  1. Existence of mild solutions for the Hamilton-Jacobi equation with critical fractional viscosity in the Besov spaces, 第33回南大阪応用数学セミナー, 大阪府立大学, 2016年11月.
  1. Existence of mild solutions for the Hamilton-Jacobi equation with critical fractional viscosity in the Besov spaces, 第38回 なかもず解析セミナー, 大阪府立大学, 2016年10月.
  1. 動的境界条件付き半線形楕円型方程式の正値解について, 浜松偏微分方程式セミナー, 静岡大学, 2015年7月.
  1. 相似な level set を持つ熱方程式の解の特徴付け, 東工大数理解析研究会, 東京工業大学, 2015年2月.
  1. Positive solutions of a semilinear elliptic equation with a dynamical boundary condition, 早稲田大学 非線形解析勉強会, 早稲田大学, 2015年1月.
  1. Asymptotics for a nonlinear integral equation with a generalized heat kernel, 第4回室蘭非線形解析研究会, 室蘭工業大学, 2014年10月.
  1. Asymptotic profiles to the solutions for a nonlinear damped wave equation, 広島微分方程式研究会, 広島大学, 2014年10月.
  1. When does the heat equation have a solution with a sequence of similar level sets?, 日本数学会2014年度秋季総合分科会函数方程式論分科会, 広島大学, 2014年9月.
  1. Asymptotics for a nonlinear integral equation with a generalized heat kernel, 第10回非線型の諸問題, 大分県中小企業会館, 2014年9月.
  1. 動的境界条件付き半線形楕円型方程式の正値解について, 山形発展方程式研究集会, ヒルズサンピア山形, 2014年9月.
  1. 動的境界条件付き半線形楕円型方程式の大域挙動, 信州大学偏微分方程式研究集会, 信州大学, 2014年6月.
  1. 動的境界条件付き半線形楕円型方程式の解の大域挙動, 第105回熊本大学応用解析セミナー, 熊本大学, 2014年6月.
  1. 非線形消散型波動方程式の解の熱核への詳細な収束評価, 大阪大学微分方程式セミナー, 大阪大学, 2014年1月.
  1. Large time behavior of solutions of a semilinear elliptic equation with a dynamical boundary condition, 第6回東北楕円型・放物型微分方程式研究集会, 東北大学, 2014年1月.
  1. 時間発展する境界条件付き半線形楕円型方程式の時間大域挙動, 東工大数理解析セミナー, 東京工業大学, 2013年11月.
  1. 時間発展する境界条件付き半線形楕円型方程式の現状, RIMS 共同研究「凝集現象を内包する非線形偏微分方程式に対する幾何学的視点と解析学的視点の協同」, 京都大学数理解析研究所, 2013年10月.
  1. 時間発展する境界条件付き半線形楕円型方程式の時間大域挙動, 名古屋大学微分方程式セミナー, 名古屋大学, 2013年7月.
  1. 時間発展する境界条件付き半線形楕円型方程式の時間大域挙動, 第51回京都駅前セミナーセミナー, 龍谷大学サテライトキャンパス, 2013年6月.
  1. 時間発展する境界条件付き半線形楕円型方程式の時間大域挙動, 第7回青葉山勉強会, 東北大学, 2013年2月.
  1. Large time behavior of solutions of a semilinear elliptic equation with a dynamical boundary condition, 九州関数方程式セミナー, 福岡大学, 2012年11月.
  1. Higher order asymptotic expansion for the heat equation with a nonlinear boundary condition, 第4回南大阪応用数学セミナー, 大阪市立大学, 2012年4月.
  1. 非線形消散型波動方程式の解の熱核への詳細な収束評価, 第4回福島楕円型・放物型微分方程式研究集会, 福島大学, 2012年1月.
  1. High order asymptotic expansion for the heat equation with a nonlinear boundary condition, 微分方程式の総合的研究, 東京大学, 2011年12月.
  1. Asymptotic expansions of the solutions of the Cauchy problem for nonlinear parabolic equations, 拡散と移流の数理, 九州工業大学, 2011年12月.
  1. 非線形消散型波動方程式の解の熱核への詳細な収束評価について, 日本数学会2011年度秋季総合分科会函数方程式論分科会, 信州大学, 2011年9月.
  1. 時間発展する非線形境界条件付きLaplace方程式の時間大域挙動, 松山解析セミナー, 愛媛大学, 2011年2月.
  1. 時間発展する非線形境界条件付きLaplace方程式の時間大域挙動, 第9回解析セミナー, 神戸大学, 2011年1月.
  1. Asymptotic profile for the Laplace equation with a nonlinear boundary condition, 第8回浜松偏微分方程式研究集会, 静岡大学, 2010年12月.
  1. 時間発展する非線形境界条件付きLaplace方程式の時間大域挙動, 神奈川大学解析特別セミナー, 神奈川大学, 2010年11月.
  1. ある反応拡散方程式系の大域解の分類, 九州関数方程式セミナー, 福岡大学, 2010年5月.
  1. 反応拡散方程式系の大域解の分類, 第32回広島大学応用数学教室談話会, 2010年4月.
  1. On the heat equation in a half-space with a nonlinear boundary condition, 盛岡応用数学小研究集会, 岩手大学, 2009年11月.
  1. 半空間における非線形境界条件付き熱方程式の大域解の分類, 東北大学応用数学セミナー, 東北大学, 2009年11月.
  1. On the heat equation in a half-space with a nonlinear boundary condition, 広島大学数理解析セミナー, 広島大学, 2009年10月.
  1. 半空間における非線形境界条件付き熱方程式の大域解の分類, 日本数学会2009年度秋季総合分科会函数方程式論分科会, 大阪大学, 2009年9月.
  1. 半空間における非線形境界条件付き熱方程式の大域解の分類, 第31回発展方程式若手セミナー, 国立女性教育会館, 2009年8月.
  1. Entropy dissipations methods for the sign-changing solutions of some semilinear heat equations with nonlinear boundary conditions, 中央大学偏微分方程式セミナー, 中央大学, 2008年7月.
  1. Entropy dissipations methods for the sign-changing solutions of some semilinear heat equations, 日本数学会2007年度春の年会函数方程式論分科会, 近畿大学, 2008年3月.
  1. Entropy dissipations methods for the sign-changing solutions of some semilinear heat equations, 若手のための偏微分方程式と数学解析, 九州大学, 2008年2月.
  1. Entropy dissipations methods for the sign-changing solutions of some semilinear heat equations, 仙台放物型・楕円型方程式研究集会, 東北大学, 2007年11月.
  1. Asymptotic behavior of solutions of some semilinear heat equation, 解析セミナー, 神戸大学, 2007年11月.
  1. 外部領域における半線形熱方程式の解の漸近挙動について, 第29回発展方程式若手セミナー, 山口県湯田温泉, 2007年8月.
  1. L1空間における半線形熱方程式の解の漸近挙動について, 室蘭工大PDEセミナー, 室蘭工業大学, 2007年7月.
  1. L1空間における半線形熱方程式の解の漸近挙動について, 浜松偏微分方程式セミナー, 静岡大学, 2007年7月.
  1. Asymptotic behavior of solutions for some semilinear heat equations in RN, 東北大学応用数学セミナー, 東北大学, 2007年4月.
  1. 半線形熱方程式の解のLq空間における漸近挙動, 日本数学会2006年度秋季総合分科会函数方程式論分科会, 大阪市立大学, 2006年9月.
  1. 半線形熱方程式の解のLq空間における漸近挙動, 第28回発展方程式若手セミナー, 六甲YMCA, 2006年8月.

外部資金

科学研究費補助金(代表者)

  1. 令和2--5年度(予定) 科学研究費 基盤研究C "動的境界条件を有する拡散方程式の非線形問題への展開"
  1. 平成28--令和元年度 科学研究費 若手研究B "動的境界条件を持つ非線形偏微分方程式の新展開"
  1. 平成24--28年度 科学研究費 若手研究B "非線形拡散方程式の解の高次展開の構築とその応用"
  1. 住友財団 2011年度基礎科学研究助成 "時間発展する境界条件を持つ楕円型方程式の非線形問題の解析"
  1. 平成22年度 科学研究費補助金 特別研究員奨励費 "非線形拡散方程式の大域解の分類"

[home]