微積分II演習 第3回 解答

- **課題 3.1.** (1) 一様収束する. (ヒント: 増減表を書いて, 極大値の値を 見ればわかる.)
 - (2) 一様収束しない.

 $x \neq 0$ のとき,極限関数は f(x) = 0 であるが, $f_n(0) = 1$ より, f(0) = 1 なので, f は不連続. f_n は \mathbb{R} 上で連続なので, f と含む区間において一様収束しない.

(3) 一様収束しない.

 $x \neq 0$ のとき、極限関数は f(x) = 0 であり、また $f_n(0) = 0$ より、 f(0) = 0. したがって、f(x) = 0. 一方、 $f_n(x)$ は x = 1/n で極大値 1/2 を取るので、

$$\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = \sup_{x \in \mathbb{R}} |f_n(x)| = \frac{1}{2}.$$

したがって, $\{f_n\}$ は \mathbb{R} 上で f に一様収束しない.

課題 3.2. すべての自然数 n と実数 x に対して,

$$\left| \frac{\sin nx}{x^2} \right| \le \frac{1}{n^2} =: b_n$$

が成立する. $\sum b_n$ は収束するので、Weierstrass の M 判定法より、 $\sum \frac{\sin nx}{n^2}$ は \mathbb{R} 上で一様収束する.

課題 3.3.

(1)
$$0$$
 (2) $\log 2$

- レポート問題 3.1. (1) 各 $x \in [0,1]$ に対して, $f_n(x) \to 0$ が分かる. 一方で, x = 1/n とすると, $f_n(1/n) = (1-1/n)^n$ なので, $n \to \infty$ のとき, $(1-1/n)^n \to 1/e$ なので, $\sup_{x \in [0,1]} f_n(x) \neq 0$ である. したがって, 一様収束しない.
 - (2) $0 < a \le 1$ を任意にとると, $x \in [a,1]$ に対しては, 十分大きなn に対して, $0 \le f_n(x) \le an(1-a)^n$ であり, $n(1-a)^n \to 0$ なので, 一様収束することがわかる.

レポート問題 3.2. (1) すべての自然数 n と実数 x に対して,

$$\left| \frac{(-1)^{n-1}n}{n^4 + x^2} \right| \le \frac{1}{n^3} =: c_n$$

が成立する. $\sum c_n$ は収束するので、Weierstrass の M 判定法より, $\sum \frac{(-1)^{n-1}n}{n^4+x^2}$ は \mathbb{R} 上で一様収束する.

(2) $f_n(x) = \frac{x}{n(1+nx^2)}$ は奇関数なので、 $x \ge 0$ で増減表を考えると、 $x = 1/\sqrt{n}$ のとき、極大値 $f(x) = 1/(2n\sqrt{n})$ をとる。すべての自然数 n と実数 x に対して、

$$|f_n(x)| \le \frac{1}{2n^{3/2}} =: d_n$$

が成立する. $\sum d_n$ は収束するので、Weierstrass の M 判定法より, $\sum \frac{x}{n(1+nx^2)}$ は \mathbb{R} 上で一様収束する.

レポート問題 3.3. Proof. 部分和を $S_n = \sum_{k=1}^n f_n$ とおく. $\{f_n\}$ は C^1 級関数列なので, $\{S_n\}$ も C^1 級関数列であり, また $\sum f_n$ に I 上各点収束し, さらに $\{S'_n\}$ は I 上 $\sum f'_n$ に一様収束する. よって, 定理 2.3 より,

$$\lim_{n \to \infty} S'_n(x) = \frac{d}{dx} \bigg(\sum f_n(x) \bigg).$$

ここで

$$S'_n(x) = \frac{d}{dx} \sum_{k=1}^n f_k(x) = \sum_{k=1}^n f'_n(x)$$

なので, $\lim_{n\to\infty} S'_n(x) = \sum f'_n(x)$ となる.